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Zero-sound-like modes in simple liquid metals
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Coherent neutron-scattering experiments on liquid cesium and rubidium near the melting point reveal
an anomalous dispersion of collective modes for frequencies wry >>1 with 7,, the Maxwell relaxation
time for shear stress in the liquid. Within the framework of generalized hydrodynamics, these modes are

shown to propagate similar to zero sound in a restricted range of wave numbers around Q =0.4 A

1

Such a behavior is known from glass-forming systems, but here simple liquid metals near the melting
point are shown to exhibit such modes too. The feature of the dispersion relation in this Q region yields
quantities known from the theory of elasticity of solids such as the shear modulus G and the Poisson
ratio v. Some evidence is found for the existence of small clusters in the liquid on the picosecond time

scale.

PACS number(s): 61.25.Mv, 61.12.Ex, 67.40.Fd

I. INTRODUCTION

Short-wavelength collective modes are an experimen-
tally well-studied feature of both liquid metals [1-4] and
rare-gas fluids [5-9]. Among these two classes of liquids
the former is known to show distinct propagating collec-
tive modes extending to wavelengths as short as the inter-
particle distance. This property has been traced back in
molecular-dynamic (MD) simulations [10,11] and
theoretical considerations to the more pronounced har-
monicity of the interparticle potential and smaller
compressibility of the metallic systems [12,13]. Thus, a
simple metal such as cesium at the melting point is a
favorable system for studying collective modes in the
liquid state. These excitations are observed experimental-
ly in the dynamic structure factor S(Q,w) by inelastic
coherent neutron scattering as so-called Brillouin lines,
using here the common extension of this term into the re-
gion beyond the hydrodynamic limit. In hydrodynamics
collective modes are well understood as propagating pres-
sure fluctuations (first sound) with the rate of collisions
restoring thermal equilibrium being large compared to
the frequency of the fluctuation. At increasing frequen-
cies in the region beyond hydrodynamics, collisions be-
come less and less important for sound propagation,
which then depends mainly on the existence of local or-
der in a liquid at the melting point. This enables the sys-
tem to support collective excitations via an effective in-
teraction potential between the particles as in a solid.
Such short-wavelength high-frequency collective modes
in a liquid are therefore called “zero-sound-like” because
of the analogy with collisionless sound, first revealed in
liquid helium [14]. In the numerous literature on collec-
tive modes a zero-sound-like propagation in simple
liquids has long been discussed [15-19], with only one ex-
perimental attempt to verify such behavior in liquid ar-
gon [19-21].

The paper is organized in the following way. After a
short description of the experiment on liquid cesium in
the next section we discuss the observed dispersion rela-
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tion of longitudinal collective modes within the frame-
work of generalized hydrodynamics and viscoelastic
theory of liquids [22-25], including a brief reference to
solid cesium [26]. The data are then compared with re-
cent molecular-dynamic results for liquid rubidium [27]
and corresponding experimental data from our own labo-
ratory [28], measured with an improved resolution of
about twice that of Copley and Rowe’s Rb experiment
[2]. This supplement shows clearly that the revealed pos-
itive dispersion is a general feature of liquid metallic sys-
tems.

II. EXPERIMENT

The present neutron-scattering measurements on liquid
cesium at 308 K (melting temperature 7,, =301.6 K)
were performed at the Forschungsreaktor Miinchen
[E;=22.5 meV, AE =0.45 meV full width at half max-
imum (FWHM)] and the High Flux Reactor, Grenoble
(E;=14.66 meV, AE=0.68 meV FWHM) using the
triple-axis spectrometers DAS and INS8, respectively.
For the reason of correct normalization of the data a con-
stant k  constant Q mode was chosen, with k + the final
wave vector and 7Q the momentum transfer in the
scattering process. Covering the Q range from 0.20 to
2.55A° with the maximum of the structure factor S(Q)
at Qp=1.42 A ™! spectra were taken for energy transfers
fio from —1.5 to +10 meV. The excitation energies of
the collective modes varied from 1.3 meV at the lowest Q
to about 6 meV at Q,/2~0.7 A~!, the maximum of the
dispersion relation (see Fig. 1). It is this low Q range that
is discussed further in this paper. The scattering data are
corrected for all relevant effects (background, container
scattering, self-shielding, second-order contamination, in-
coherent intensity, resolution broadening, and multiple
scattering). A more detailed description of the experi-
ment and the data evaluation procedure is given else-
where [29,30].
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FIG. 1. Dispersion relation of liquid cesium. Dots, peak po-
sition ©™(Q) of J,(Q,w); dashed line, ¢,(0)=965 m/s; full line
¢, =1120 m/s; rhombs, width (HWHM) of J,(Q,w).

III. RESULTS AND DISCUSSION

Generalized hydrodynamics describe the scattering law
S(Q,w) via the wave number and frequency-dependent
density response function y(Q,z) as

S(0,0)=—¥"(0,0), (1)
mTw

with x¥''(Q,z =w+i0) the imaginary part of the general-
ized susceptibility

X(Q,2)=—[2z—wkQ)+izQ?D(Q,2)] " . )

Here w3(Q)=kzTQ*MS(Q)]"! and D(Q,z) is the so-
called damping function. Although there are attempts
nowadays to extract the complex quantity D (Q,z) from
experimental scattering data [31] we use the following
prescription of the memory function D (Q,z)

y—1)wd(Q)7, N [0HQ)—yod(Q)]r,
1—izT, 1—izT, )

5 _
0°D(Q,z)

(3)

Here y=c,/c, is the specific-heat ratio, 0} Q) is the
well-known normalized fourth moment of S(Q,w). The
time constants 7, and 7, characterize the thermal and
viscoelastic decay of a density fluctuation in a simple
liquid at low Q. Whereas there are recent more sophisti-
cated mode-coupling concepts to derive memory func-
tions for supercooled liquids [32], Eq. (3) seems to be the
simplest working ansatz to describe the experimental
findings in a liquid at the melting point. Such a form has
been used earlier, especially in Chung and Yip’s [20] and
Mountain’s [33] work on the collective dynamics in liquid
argon. In contrast to the case of argon Eq. (3) can be
simplified further in the case of liquid cesium. Because of
the condition ]zrh | >>1 being fulfilled rather well in the
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alkali metal for collective excitations in the ps~! region

[29], the first term of Eq. (3) can be approximated accu-
rately by i(y—1)w3/z. Moreover the factor (y—1)
reduces the weight of the thermal decay channel in the
case of an alkali metal, where (y —1) is of the order of 0.1
[34]. Thus one is left with Eq. (4) for x(Q,z)

0.2)=— | = yayi+i QY ei Qe 7

1

1—izt
(4)

Here and below the time constant 7 stands for the viscoe-
lastic relaxation time introduced by Maxwell [35].

Looking for collective excitations the poles of x(Q,z)
can be determined and lead to the dispersion relation
Q)= 5 (el ~ D+ (@l ~ D+ aralr] 2] . (5)
In the limit (w7)? << 1 this yields the well-known adiabat-
ic sound velocity ¢, =v,[y /S (Q)]'/? with the thermal ve-
locity vy=(kpzT/M)'/%. As can be seen from Fig. 1 this
limit is not reached properly in our present experiment.
The real hydrodynamic limit w7 <<1 for collective excita-
tions is only accessible by means of the neutron Brillouin
scattering technique [7], which has made some progress
recently [36].

More interesting here is the limit (o7)?>>>1. From Eq.
(4) it is seen that the viscoelastic part of the memory
function starts to contribute noticeably at wr~=1. This
affects the poles of x(Q,z) leading to a shift of the excita-
tion frequency towards higher frequencies. This positive
dispersion beyond the hydrodynamic limit is clearly seen
in Fig. 1. In the case wt>>1 the dispersion relation [Eq.
(5)] has the limit

o(Q)=c,(Q)Q , (6)

where ¢, (Q) is the high-frequency sound velocity, which
is no longer determined by the system’s compressibility
alone as in the case of the adiabatic sound velocity. In-
stead ¢, is ruled by elastic moduli as in a solid. Accord-
ing to Schofield ¢, is given as

(7

B, (Q)+4G (@) |
Cw(Q): s

p

where p is the mass density and B, and G, are the
high-frequency bulk and shear modulus of the liquid,
with the elastic constant ¢;,;(Q)=B ,(Q)+1G (Q) in
the limit Q —0 [18]. It is seen from this formula that
both compression and shear are involved in a high-
frequency sound mode in contrast to hydrodynamic
sound with vanishing shear modulus G (w7 <<1). In the
low Q limit and wr>>1 the two elastic moduli are re-
lated by the generalized Cauchy relation B, =23G,
+2(p —pkyT) derived by Zwanzig and Mountain [23] for
an isotropic system of particles interacting via two-body
central forces. As in a dense liquid near the melting
point the contribution (p —pkgT) is negligibly small, the
high-frequency sound velocity can be finally expressed as
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3G,(Q)
p

where G (Q) corresponds to the elastic constant ¢,,(Q)
in a disordered system [18] and yields for vanishing Q,

c.(Q)= (Q—0), (8)

kpT w%o?
-5 L TE
M 10

G..(Q—0)=p 9)

In a liquid metal at the meltmg point the kinetic contrl—
bution kz T /M in Eq. (9) is of the order of 5X 10”2 com-
pared to the solidlike potential part, where the Einstein
frequency wy and the effective core diameter o simply
characterize the interparticle potential (wz=4.13X 10"
s7!, 0=4.8 A here [29]). Thus high-frequency sound
(oT>>1) is propagated mainly via the strong coupling
between neighboring particles as in a disordered solid.

In addition we show in Fig. 1 the width [half width at
half maximum (HWHM)] of the -collective modes
(thombs). Whereas a damping varying with Q2 is known
from hydrodynamics, we find a much weaker increase
beyond the hydrodynamic region. Such a nearly linear
increase with Q can be viewed as another feature of zero-
sound-like excitations [14].

The approach of the sound velocity to ¢, is shown in
Fig. 2, where the phase velocity ¢;(Q)=w,,,(Q)/Q is
plotted. Whereas the adiabatic sound velocity is 965 m/s
in the hydrodynamic limit (dashed line [34]), the sound
velocity increases to ¢, (Q) beyond Q =0.2 A~ , reach-
ing a maximum at about Q0 =0.4 A7 At this Q value a
length scale of two to three partlcle diameters o is
resolved in the neutron-scattering experiment. Obvious-
ly, on this scale, which covers the well-defined first to
second coordination shell, the sound propagation is solid-
like. From the peak value of the sound velocity in Fig. 2
¢, (0)=1120 m/s the shear modulus G, has been extra-
polated to G _(0)=(7.67+0.95)X10°  g/cms?
[Eq. (8)], which agrees well with the calculated value
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FIG. 2. Anomalous sound dispersion in liquid cesium. Dots,
c(Q)=w™Q)/Q; full line, ¢,(Q)=v,[y /S(Q)]/%
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G, =7.55X10° g/cms? from Eq. (9). The value in the
liquid reaches nearly two-thirds of that in solid cesium,
where G, is 1.2X10'° g/cm s? at room temperature [26].
The shear modulus of the liquid now known, the calcula-
tion of the Maxwell relaxation time

TM=0/G (10)

yields 7,,=0.86X1071? s with 1,=6.61X107> g/cms
the shear viscosity at 308 K [34].

It is the quantity 7,, that sets the time scale for the
transition from first sound (w7, <<1) to zero sound
(wTpy>1). In Fig. 3 the measured quantity
A=[coQ)—cXQ)]/[c% (Q)—cXQ)], which represents
the contribution of Im[zD (Q,z)] to sound dispersion [Eq.
(2)], clearly shows the transition to the zero sound re-
gime. This quantity can simply be expressed as

[o(Q)my 1P

1+ [0(Q)7y P an
(full curve in Fig. 3 with 7,,=0.86 ps).

A weak Q dependence of 7 in the limited wave-vector
region (Q <0.8 A™1) has been ignored here for the sake
of simplicity. It is seen again that the hydrodynamic lim-
it oty =1 is not covered in our present experiment.
From w7y, =1 and w=c; X Q for the low Q d1spers1on a
limiting Q value of Q,, =(c,7y,) " 1=0.12 A~! can be es-
timated for the true hydrodynamic regime. Beyond this
limit, the dispersive part of the memory function
zQ2D (Q,z) attains about 95% of its high-frequency satu-
ration value where sound propagation is ruled by elastic
properties [Eq. (7)]. Hence it is obvious that the liquid
approaches the limit of solidlike elastic response. Such a
transition to solidlike sound propagation is known from

glass-forming supercooled liquids [32,33,37]. It is re-
A
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FIG. 3. A=(c?—c})(c% —c}) ™! (dots) vs scaled frequency

Ty indicating the 1ncreasing contribution of the term
Im[zQ2D(Q,z)] [see Eq. (2)] in the zero sound regime. Full
line, Eq. (11) with 7,, =0.86 ps.
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markable that dense 51mple liquids show such modes, al-
beit in a restricted Q region around Q =0.4 A~ , too.

The solidlike high-frequency response of the hquid now
established, a quantity known from the theory of elastic
continua—the Poisson ratio v—seems to be useful in the
context of simple liquids. The ratio v=(Ar/r)/(Al/])
describes the relative change Ar/r of the lateral dimen-
sion of a volume element in the case of an applied longi-
tudinal strain Al/I in the theory of elasticity [38]. Ex-
tending v to nonzero wave numbers yields a generalized
Q-dependent Poisson ratio

1—{c(Q)/[V3e,(Q)]}?
1+ {c(Q)/[V3ce, ()]}’

This quantity is easily evaluated from the experimentally
measured sound velocities in the region where wr>>1
holds, i.e., for @ =0.4 Al (Fig. 4). Below this limit v(Q)
is no longer determined by c(Q)/c,(Q) as wr>>1 is not
valid. The ratio can then be shown to approach
v(Q =0)=0.25, the well-known bulk value for the Pois-
son rate of an isotropic solid [23]. In a solid the Poisson
ratio is defined as v={(c, +p)/(c{;+c5) [39], with ¢y
and c;, the elastic constants and p the thermodynamic
pressure. Inserting Schofield’s generalizations of the elas-
tic constants for a liquid [18] the approximation

V(Q)=———wﬁ—Q—)—— (13)
1 Q) +0X(Q)

can be derived, where ©?(Q) and w}(Q) are the known
second moments of the transverse and longitudinal
current correlation function, respectively [22].

In Fig. 4 the experimental values [Eq. (12)] are com-
pared with the above theoretical result [Eq. (13)], show-
ing an increase of v(Q) which indicates more solidlike be-
havior of the liquid at shorter distances. The value of v
for solid Cs (v=0.38) is indicated for comparison [26].

v(Q)= (wT>>1) . (12)
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FIG. 4. Wave-vector d?pendent Poisson ratio v(Q) showing a
maximum at Q,=1.4 A~ . Dots, experimental values, Eq. (12);
dashed line, Eq. (13); rhomb, isotropic bulk value v(0)=0.25;
arrow, v=0.38 for solid cesium [26].
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A Poisson ratio deviating significantly from the isotropic
limit v=0.25 indicates a certain extent of a short-time
anisotropy in a simple liquid at nonvanishing wave num-
bers. It is remarkable that the calculated Poisson ratio
[Eq. (13)] reaches a maximum value of about 0.5 at Q,,
the position of the principal peak of S(Q). In this region
again the condition w7>>1 is not valid and hence we
could not evaluate experimental values for the Poisson
ratio. The anisotropy seems to be most pronounced at
Qy, corresponding to the next-neighbor distance
d=~2m/Q,. This may indicate again the close resem-
blance of a melting point liquid with a solid on this length
scale.

Returnmg to the results in the Q region around
Q0 =0.4 A~ 1, our findings give some evidence for the ex-
istence of small clusters of about 15-A size, as this length
scale is resolved around 0.4 A ™!, Such a volume contains
about 12 to 15 atoms in liquid cesium. Thus for a short
time there seems an ensemble of about 15 highly correlat-
ed particles to be formed, which shows shear relaxation
on the picosecond scale. There is an interesting argu-
ment that gives evidence for the formation of clusters in a
liquid [44]. In a simple calculation long ago, Frank has
shown that an icosahedral cluster of 13 particles (12
around a central one) interacting via a Lennard-Jones
(LJ) potential has a binding energy that is 8.4% greater
than that with the corresponding crystalline structure,
which is fcc in the case of LJ potentials. Indeed, for these
energetic reasons, LJ liquids do show some tendency to-
wards icosahedral order, especially in the supercooled
state, as has been shown in molecular-dynamical simula-
tions [45]. Carrying out an analogous calculation for a
liquid metal-—the cesium potential for 7'=308 K of
Kambayashi and Kahl has been used [46]—we find an
energetic preference of 149% for the formation of such a
cluster in the liquid state. Hence it can be concluded that
the occurrence of clusters is even more pronounced in
liquid metals than in LJ fluids. It is our conjecture that
the picosecond cluster dynamics in the liquid is the begin-
ning of a process, which is known as so-called structural
relaxation in the theory for the glass transition of disor-
dered media [32].

IV. COMPARISON WITH OTHER SYSTEMS

A short comparison of sound dispersion in other liquid
metals shows the general feature of the above-described
phenomena. Whereas from Copley and Rowe’s rubidium
data (resolution FWHM=1 meV) a zero-sound-like
dispersion can only be conjectured [2], the effect clearly
shows up in our experimental data for rubidium at 313 K
(Ty;=312.6 K). These data (Fig. 5) have been obtained
at the FRM Munich with an improved resolution
(FWHM) of 0.54 meV [28] and are in good agreement
with a recent MD simulation study of Balucani, Torcini,
and Vallauri [27], showing the characteristic sound veloc-
ity maximum beyond the hydrodynamic limit.

An explanation based on a hydrodynamic mode-
coupling theory as proposed for anomalous dispersion in
liquid argon [9] definitely fails for a liquid metal: Calcu-
lating the value of a;,—the mode-coupling coefficient of
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FIG. 5. Comparison with the sound velocity ¢ (Q) for liquid
rubidium. Circles, Rb at 335 K (MD simulation [27]); rhombs,
Rb at 313 K (scattering experiment [28]); full line, ¢, =1503
m/s; dashed line, ¢,(0)=1260 m/s.

the anomalous contribution in the dispersion law
o=c,Q +a,0%? [9]—yields a value of a,=4.3X10'
A3%2571 for liquid cesium at 308 K, which is two orders
of magnitude smaller than for liquid argon
(a,=6.4X10'2 A>2571, T=120 K, p =20 bar [9]). This
is mainly due to the fact that the coefficient a; is essen-
tially proportional to (y —1)? [9], which is of order unity
in LY systems and 10~ 2 in a liquid metal. It is the factor
(y —1) that is crucial for the different dynamics in liquid
metals (y =1.10) and LJ systems (Y =2). The former are
characterized by solid features like elastic response from
collective excitations, whereas the latter show thermal re-
laxation. Moreover the high-frequency limit o7>>1 is
not reached properly in these liquids, except for the case
of strongly pressurized argon (850 bar) [10], where Verk-
erk, van Well, and de Schepper [10] interestingly state a
glasslike dispersion of sound modes. A more recent
demonstration of thermal relaxation in a LJ system is the
systematic study of Montfrooij for dense helium gas [40],
thus representing a physical system contrary to a liquid
metal. Also, from the extensive study of hard-sphere sys-
tems at various densities both experimentally [41] and
theoretically [42,43] can be deduced that solidlike sound
propagation only occurs at high densities near the
solidification. Hence, again a zero-sound-like dispersion
can be viewed as a precursor to the liquid-solid transi-
tion, which recently has found wide interest as glass tran-
sition in the case of disordered systems [32].

V. CONCLUSIONS

In conclusion, we report high-resolution thermal
neutron-scattering results on liquid cesium and liquid ru-
bidium near the melting point. In these liquid metals
short-wavelength collective excitations with anomalous
dispersion are observed for wave numbers beyond the hy-
drodynamic limit. These propagating modes are
identified as zero sound in the region around Q =0.4
A~!. First, a renormalization of the known adiabatic
sound velocity c,, leading to an enhanced high-frequency
sound velocity ¢, is found. Second, a reduced damping
of the zero sound modes is observed, varying only linear-
ly with wave number. Furthermore the elastic shear
modulus G, of liquid cesium could be determined exper-
imentally. From the solidlike features of sound disper-
sion a quantity known from the theory of elasticity of
solids—the Poisson ratio v—is introduced into the dis-
cussion of liquids, showing an increase over the isotropic
value v=0.25 at Q =0, indicating a local anisotropy at
nonvanishing wave numbers in a simple liquid. The ex-
istence of short-time clusters of 12 to 15 particles has
been discussed and corroborated by an estimation of the
binding energy of an icosahedrally ordered cluster in the
liquid metal.

An interesting issue for further experiments would be
to follow the collective modes down to pure adiabatic
sound, wohich has been estimated above to occur at
Q=0.1 A™!. A Brillouin scattering experiment on a
liquid metal could shed some light upon this question and
is yet an outstanding task. Second, it might be rather in-
teresting to unravel the microscopic solidlike features of
a simple liquid further in molecular-dynamics simula-
tions, which moreover could substantiate the existence of
small clusters on the picosecond time scale in a simple
liquid metal.
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